8.1. ОЦЕНКА ИНСТРУМЕНТОВ С ФИКСИРОВАННЫМИ ДОХОДАМИ НА ОСНОВАНИИ РАСЧЕТА ПРИВЕДЕННОЙ СТОИМОСТИ

В главе 4 описано, что если существует единственная безрисковая (ее также называют гарантированной, или надежной) процентная ставка, расчет приведенной стоимости любого потока ожидаемых денежных поступлений не представляет особой сложности.
Эта задача включает в себя применение формулы расчета чистой приведенной стоимости с использованием безрисковой процентной ставки в качестве ставки дисконтирования.

Предположим, что вы приобрели ценную бумагу с фиксированным доходом с ежегодной выплатой по ней 100 долл. на протяжении последующих трех лет. Какова стоимость этого трехлетнего финансового контракта типа аннуитета, если известно, что соответствующая дисконтная ставка составляет 6% в год? Как показано в главе 4, ответ будет равен 267,30 долл. и может быть легко получен с помощью специального финансового калькулятора, таблицы, в которой указаны коэффициенты приведенной стоимости или с помощью математической формулы.

Напомним формулу для расчета приведенной стоимости обычного аннуитета, равного 1 долл. для периодов, при процентной ставке (i):

PV = 1 - (1+i)-n
i

В финансовый калькулятор введем значения для и, (", РМТ и рассчитаем приведенную стоимость (PV):

n

i

PV

FV

РМТ

Результат

3

6

?

0

100

Pl/=267,30

Теперь предположим, что через час после покупки этой ценной бумаги вам необходимо ее продать, но за это время безрисковая процентная ставка поднялась с 6% до %в год. Сколько теперь можно получить за нее?

Уровень процентных ставок изменился, но ожидаемые денежные поступления от инвестиций в данную ценную бумагу остались неизменными. Для того чтобы инвестор смог получить 7% доходности в год, цена этого актива должна понизиться. Насколько? До той отметки, при которой она будет равна приведенной стоимости ожидаемых денежных потоков, дисконтированных по 7%-ной ставке.

n

i

PV

FV

PMT

Результат

3

7

?

0

100

PV=262,43

Ценная бумага с фиксированным доходом с ежегодной выплатой по ней 100 долл. на протяжении последующих трех лет имеет приведенную стоимость 262,43 долл. и обеспечивает своему владельцу доходность в размере 7% в год. Таким образом, при повышении рыночных процентных ставок курс любых ценных бумаг с фиксированным доходом понижается. Это связано с тем, что инвесторы приобретут только в том случае, если они обеспечат им уровень доходности, соответствующий новым рыночным условиям.

Итак, повышение процентной ставки на 1% приведет к падению курса ценной бумаги на 4,87 долл. И наоборот, понижение процентной ставки приведет к соответствующему повышению ее курса.

Это иллюстрирует основной принцип, используемый при оценке активов с заведомо известными, фиксированными денежными потоками. Изменение рыночных процентных ставок приводит к изменению в противоположном направлении рыночных цен всех имеющихся финансовых контрактов с фиксированными поступлениями платежей.

Поскольку процесс изменения процентных ставок непредсказуем, то и курс ценных бумаг с фиксированным доходом непредсказуем вплоть до момента их погашения.

Контрольный вопрос 8.1
Что произойдет с курсом ценной бумаги с фиксированным доходом с ежегодной выплатой по ней 100 долл., если рыночная процентная ставка упадет с 6% до 5% годовых?

На практике оценка стоимости известных денежных потоков не всегда так проста, как в приведенном примере. Это связано с тем, что в реальной жизни обычно неизвестно, какую именно дисконтную ставку следует использовать в формуле вычисления, приведенной стоимости денежных поступлений. Как было отмечено в главе 2, рыночные процентные ставки различаются в зависимости от сроков погашения финансовых инструментов. На рис. 8.1 представлен график, отображающий кривую доходности (зависимость между доходностью облигаций примерно одинакового инвестиционного качества и сроками их погашения. — Прим. ред.) по облигациям Казначейства США.

Было бы заманчиво предположить, что для оценки трехлетнего аннуитета, рассматриваемого в нашем примере, в качестве дисконтной ставки может быть применена процентная ставка по облигациям Казначейства США со сроком погашения 3 года. Однако это было бы неправильно. Реальная процедура, позволяющая выполнять оценку других известных денежных потоков на основании информации, содержащейся в кривой доходности, намного более сложна.

Срок до погашения (лет) Источник. The Wall Street Journal, April 3, p.C21

Рис. 8.1. Кривая доходности ценных бумаг Казначейства США

<< | >>
Источник: Зви Боди, Роберт Мертон. Финансы. 2007

Еще по теме 8.1. ОЦЕНКА ИНСТРУМЕНТОВ С ФИКСИРОВАННЫМИ ДОХОДАМИ НА ОСНОВАНИИ РАСЧЕТА ПРИВЕДЕННОЙ СТОИМОСТИ:

  1. 4.9.1. Расчет чистой приведенной стоимости: валютный аспект
  2. Анализ настоящей стоимости и расчёт окупаемости капиталовложений по приведённым (дисконтированным) затратам
  3. Глава 8 ОЦЕНКА АКТИВОВ С ФИКСИРОВАННЫМИ ДОХОДАМИ: ОБЛИГАЦИИ
  4. Расчет стоимости активов, оценка и составление отчетности о стоимости активов и пассивов фонда
  5. 53. Чистая приведенная стоимость
  6. 4.6.2. Приведенная стоимость аннуитета
  7. Приведенная (дисконтированная) стоимость
  8. 4.3. ПРИВЕДЕННАЯ СТОИМОСТЬ ДЕНЕГ И ДИСКОНТИРОВАНИЕ
  9. 1. Метод приведенной стоимости
  10. § 9.6. ПРИВЕДЕННАЯ СТОИМОСТЬ ВОЗМОЖНОСТЕЙ РОСТА
  11. 4.5.3. Приведенная стоимость нескольких денежных потоков
  12. 4.10.5. Инфляция и приведенная стоимость
  13. Чистая приведенная стоимость проекта (РУ)
  14. 1. Расчет текущей стоимости ожидаемых денежных потоковс их дисконтированием по изменяющейся во времени норме дохода
  15. Метод эквивалентной годовой стоимости (приведенных затрат)
  16. Метод приведенной величины дохода.